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Abstract
A model of the passive vector field advected by the uncorrelated in time
Gaussian velocity with power-like covariance is studied by means of the
renormalization group and the operator product expansion. The structure
functions of the admixture demonstrate essential power-like dependence on
the external scale in the inertial range (the case of an anomalous scaling). The
method of finding independent tensor invariants in the cases of two and three
dimensions is proposed to eliminate linear dependencies between the operators
entering into the operator product expansions of the structure functions. The
constructed operator bases, which include the powers of the dissipation operator
and the enstrophy operator, provide the possibility of calculating the exponents
of the anomalous scaling.

PACS number: 47.27.−i

1. Introduction

The term ‘anomalous scaling’ refers to deviations from the predictions of the Kolmogorov
theory. Such deviations take place, in particular, in the behaviour of the structure functions
Sn(r) of the turbulent velocity field v in the inertial range l � r � L, where L and l are
the external scale and the dissipation length. The structure functions of the vector field ϕ are
defined as

Sn(r) ≡ 〈[ϕr(t, x + r) − ϕr(t, x)]n〉, ϕr ≡ ϕiri/r, (1)

For the field v the Kolmogorov theory predicts Sn(r) ∼ rn/3, while the experiments indicate
that Sn(r) ∼ rn/3−ξn with certain nontrivial ‘anomalous exponents’ ξn.

The Kolmogorov theory states that the only dimensional parameter which determines
the statistics of the turbulent velocity pulsations is the average rate of energy dissipation per
unit mass ε = ν〈�dis〉, where ν is the kinematic viscosity and �dis ≡ (∂ivj + ∂jvi)

2/2

0305-4470/06/258133+08$30.00 © 2006 IOP Publishing Ltd Printed in the UK 8133

http://dx.doi.org/10.1088/0305-4470/39/25/S23
mailto:snov@mail.ru
http://stacks.iop.org/JPhysA/39/8133


8134 S V Novikov

is the operator of local energy dissipation. In stationary state, it is held that ε = W

with the power of energy pumping W . In this case the Kolmogorov hypothesis can be
formulated for the structure functions (1) as follows. Dimensional analysis leads to the
relation Sn(r, ν,W,L) = (Wr)n/3Rn(r/ l, r/L), where l ≡ (ν3/W)1/4. Then the Kolmogorov
hypothesis states that the function Rn has a finite limit in the inertial interval: Rn(∞, 0) =
const �= 0.

At present the possibility of taking limit in the Rn(r/ l, r/L) on the first argument is
universally recognized, i.e. the quantity Rn(r/L) ≡ Rn(∞, r/L) is recognized finite. Hence
the structure functions are considered to be independent on the viscosity in the IR region r � l.
If the Kolmogorov hypothesis about finiteness of the Rn(r/L) in the limit r/L → 0 is violated
and the asymptotic behaviour is power-like Rn(r/L) ∼ (r/L)−ξn , then the anomalous scaling
appears. In phenomenological generalizations of the Kolmogorov theory the anomalous
scaling is usually considered as a result of fluctuations of the energy dissipation rate [1, 2].

The analogy with the theory of critical phenomena suggests itself when the problem is
formulated as the field-theoretical model. Then the direct analogy to the theory of critical
phenomena provides the possibility of applying the powerful UV-renormalization technique
to the problem. In this way the first Kolmogorov hypothesis can be proved (independence of
the structure functions on the viscosity in the inertial range). The behaviour of Rn(r/L) in the
range r/L � 1 is not determined by the renormalization group itself, the method to find it is
the operator product expansion (OPE) which gives the asymptotic expansion

Sn(r) ∝ rn/3
∑
F

(r/L)�F AF , (2)

where the summation runs over all possible scalar operator products F (constructed from local
products of the fields vi(t, x) and their derivatives), �F are the critical dimensions of the
operators [3]. More precisely, �F are the eigenvalues of the matrix of critical dimensions,
and summation in (2) runs over the eigenvectors of the matrix. The operators entering into the
OPE are those which appear in the Taylor expansion and all the operators that admix to them
in renormalization.

If for each F holds �F > 0 (as in the theory of phase transitions) then the terms in
(2) determine corrections to the Kolmogorov scaling. If there is an operator in (2) with
�F < 0—‘dangerous operator’ then the limit r/L → 0 in (2) does not exist which leads to
the anomalous scaling. Realization of the described scenario meets however two difficulties:
technical difficulty of calculation of the critical dimensions �F and fundamental one—if in the
theory a dangerous operator exists then it can be shown that with necessity there are infinitely
many dangerous operators, the spectrum of their critical dimensions is unbounded below (we
cannot point at ‘the most dangerous’ operator). Thus the expansion (2) can be useful when
summation of the series is possible, or when (2) contains only finite number of terms due to
the model features.

2. A passive scalar admixture

Recently, significant progress in the description of the anomalous scaling has been achieved
in related problems of the turbulent advection of a passive admixture. The experiments and
computer simulation data demonstrate that the anomalous scaling appears not only in the
turbulent pulsations of the velocity, but much more it reveals in the properties of the field
transferred by the turbulent flow θ(t, x) which may be the field of the admixture concentration
or the temperature field. The passive scalar advected by the turbulent velocity field vi(t, x) is
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described by the equation

∂tθ + (vj ∂j )θ = ν0∂
2θ + f, (3)

where ν0 is the diffusivity (or the thermal diffusivity), f is the source of the field θ . Significant
progress in the description of the anomalous scaling has been achieved in a relatively simple
model, due to Kraichnan [4, 5], of a passive scalar advection which assumes the velocity field
to be delta-correlated in time and Gaussian with covariance

〈vi(t + τ, x + r)vj (t, x)〉 = D0δ(τ )

∫
dk

(2π)d
Pij (k)N(k) exp ikr, (4)

where Pij (k) ≡ δij − kikj /k2 is the transverse projector (the consequence of transversality
of the velocity), the function N(k) in d-dimensional space is modelled with the power-like
expression N(k) ≡ k−d−ε and is supposed to be somehow IR regularized on the scale k ∼ L−1.
Here 0 � ε � 2 is a kind of Hölder exponent which measures the ‘roughness’ of the velocity
field. In the RG approach, it plays the same role as the parameter 4−d in the theory of critical
phenomena. The physical value of parameter ε is ε = 4/3, for which the amplitude factor D0

has the same dimension as the energy pumping power per unit mass.
In the model (3)–(4), the existence of the anomalous scaling was substantiated and the

exponents ξn of the structure functions were calculated [6–9]. The first results were obtained
using the Hopf equations on the distribution function of the equal time fluctuations of the
admixture field. The linearity of equation (3) for θ results in closed equations (instead of
chain of equations) for the equal time correlation functions. The analysis of so-called ‘zero
modes’ allows one to substantiate the anomalous scaling and to calculate the anomalous
exponents. The pair function is founded exactly and has no anomalous scaling (ξ2 = 0). The
exponents of the high-order functions were calculated approximately with small parameters ε

[6, 7] and 1/d [8, 9]:

ξn = n(n − 2)ε/2(d + 2) + O(ε2), (5)

ξn = n(n − 2)ε/2d + O(1/d2). (6)

The analysis of the zero modes gives also interesting results in another case—in the Batchelor
limit ε = 2 [10–13].

Until now the technical difficulties do not allow us to calculate higher-order terms of the
expansions (5) using the analysis of the zero modes. The methods of RG and OPE turns out to
be more effective to find the asymptotic approximation on small ε. The terms ∼ ε2 [3] and ∼ε3

[14] were calculated using these methods. It is essential that in the Kraichnan model the finite
number of terms contribute to the OPE (2) of the structure function Sn, precisely, those are
the powers of the dissipation operator of the admixture field �k

dis with 1 � k � n/2. Joining
of asymptotic expansion of the exponents ξn on small ε (taking three terms of the expansion)
with asymptotic approximation near the Batchelor limit(ε = 2) results in interpolation for
ξn(ε) which coincides with the data of numerical experiment (within the experimental errors)
in the range 0 � ε � 2, including the physical value ε = 4/3 [14].

The RG method demonstrates the universality of the approach besides technical efficiency.
Using the RG the anomalous exponents of order ε2 in the model of compressible fluid were
calculated [15], the model of advection by the Gaussian velocity field with finite correlation
time was analysed in [16, 17], the Kazantsev model of the magnetic hydrodynamics—in [15].
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3. A passive vector admixture

In the present paper we concentrate on the model of advection of a passive vector admixture
proposed in [18–21]. The model is the direct generalization of (3) and is described by the
equation

∂tϕi + (vj ∂j )ϕi = ν0∂
2ϕi − ∂iP + fi, (7)

which come out from equation (3) after replacing the scalar field θ with the transversal vector
field ϕi and adding the pressure gradient P to the left-hand side to ensure transversality
∂iϕi = 0. The random force fi in (7) obeys the Gaussian distribution with zero mean and the
covariance

〈fi(t + τ, x + r)fj (t, x)〉 = δ(τ )Cij (r/L). (8)

The exact form of the function Cij (r/L) is not important. It only models the energy influx
resulting from the interaction with large vortices, which compensates the dissipation losses.

Note that all the odd-order structure functions vanish because equation (7) is invariant
with respect to the substitution ϕ → −ϕ, f → −f and the fact that f is Gaussian (the
pressure term can be eliminated from (7) by applying the transverse projector).

The model (4), (7), (8) can be considered as a rough approximation describing the turbulent
velocity field, when ϕ is regarded as the ‘hard’ component of the velocity field and v is regarded
as the ‘soft’ one. Then in the Navier–Stokes (NS) equation for the hard component only the
convective transfer by the soft component is taken into account and the soft component obeys
the Gaussian distribution with covariance (4). These assumptions do not violate Galilean
invariance of the model. Since the structure functions (1) are Galilean invariant, it follows that
OPE (2) contains only contributions from the operators which are also Galilean invariant, just
as in the stochastic hydrodynamics which is described by the NS equation.

The model (4), (7), (8) was analysed by means of the Hopf equation for the pair correlation
function [19]. The function turns out to be non-anomalous (ξ2 = 0) in the isotropic case.
The model was considered using the methods of RG and OPE in [18]. It was shown that
the main contribution to the OPE of the S2n gives a family of scalar operators of the form
(∂ϕ)2n. Renormalization of the operators is not multiplicative, but includes operator mixing.
The mixing complicates greatly the calculation of the anomalous exponents of the operators;
obtaining an analytic expression of the anomalous exponents for arbitrary n does not succeed
even in the one-loop approximation. In [18], the one-loop approximation was considered for
the family of the S4; the exponents were evaluated in the linear on ε approximation, the negative
exponent were found among them, so the existence of the anomalous scaling was proved in
the model of the vector advection with the mixing of the operators. It was in the case of flat
flows (d = 2) [21] that the anomalous exponents of the structure functions of the arbitrary
order were calculated in the model (4), (7), (8). The anomalous exponents were obtained in
the one-loop approximation coincide with the exponents (5) of the scalar admixture. ‘The
most dangerous’ operators were found to be the powers of dissipation operator, just as in the
scalar model.

4. The bases for scalar operators of the form (∂ϕ)n

As demonstrated in [18], the leading terms in (2) arise from the family �(n) of scalar operators
of the form (∂ϕ)n. More precisely, that family consists of all possible contractions of n tensors
∂iϕj . Denoting the symmetric and the antisymmetric parts of the ∂iϕj as

Sij ≡ (∂iϕj + ∂jϕi)/2, Aij ≡ (∂iϕj − ∂jϕi)/2, (9)
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we can express for S4 the seven operators which form the family �(4) = {tr(A2)2, tr(S2)2,

tr(A2) tr(S2), tr(A2S2), tr((AS)2), tr(A4), tr(S4)}. The main difficulty in the calculation of the
critical dimensions of the operators from �(n) is the rapid growth of the �(n) cardinality with
n. For example, the family �(6) contains 24 operators, �(8)—81,�(10)—278 and �(18)—as
many as 47 246 operators. Fortunately, when space dimension d is sufficiently small not all of
the operators are independent. For the most interesting cases d = 2 and d = 3, the elimination
of redundant operators reduces drastically the size of the matrix of critical dimensions.

Our goal is to construct for d = 2 and d = 3 the sets �d of minimal size which contains
invariants of the matrix ∂iϕj . Then we will form bases of �(n) using products of the invariants
from �d .

4.1. 2D case

The dependencies mentioned above can be considered as consequences of the Hamilton–
Cayley identity. For a traceless 2 × 2 matrix M it has the form:

χ2(M) = M2 − I tr(M2)/2 = 0, (10)

with the identity matrix I. From (10) one has χ2(αA + βS) = 0 for any linear combination
of the matrices A and S from (9). Collecting the coefficients of three independent structures
α2, β2 and αβ gives the three relations:

A2 − I tr(A2)/2 = 0, S2 − I tr(S2)/2 = 0, AS + SA = 0. (11)

The first and second relations are the Hamilton–Cayley identities for the matrices A and S.
The last one can be interpreted as a commutation relation. The relations (11) can be written
in the form

A2 ∼ 0, S2 ∼ 0, SA ∼ −AS, (12)

where ∼ means the equality up to polynomials of lesser degree.
It follows from (12) that P3(A, S) ∼ 0 for any polynomial of the third degree,

so that an arbitrary polynomial of the matrices A and S can be written as P(A, S) =
C1(�2)AS + C2(�2)A + C3(�2)S + C4(�2)I , where the coefficients are polynomials of the
scalar invariants from the minimal set

�2(A, S) = {tr(A2), tr(S2)} (13)

and, as a consequence, tr(P (A, S)) = 2C4(�2).
Thus for d = 2 each operator from �(2n) is a polynomial Pn(tr(A2), tr(S2)), which can

be decomposed into the basis

tr(A2)n−k tr(S2)k, 0 � k � n. (14)

4.2. 3D case

The Hamilton–Cayley identity for a traceless 3 × 3 matrix M has the form:

χ3(M) = M3 − M tr(M2)/2 − I tr(M3)/3 = 0. (15)

From the Hamilton–Cayley identity for the matrices A and S from (9) it follows that the
minimal set �3(A, S) contains the invariants tr(A2), tr(S2) and tr(S3). Equating to zero the
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coefficients of α2β and αβ2 in the identity χ3(αA + βS) = 0 gives

A2S + ASA + SA2 − S tr(A2)/2 − I tr(A2S) = 0. (16)

AS2 + SAS + S2A − A tr(S2)/2 = 0. (17)

It follows from (16) that the invariant tr(A2S) is in the minimal set �3(A, S). Neglecting the
polynomials of lesser degrees in (15)–(17) results in commutation-like relations

A3 ∼ 0, S3 ∼ 0, (18)

SAA ∼ −AAS − ASA, SSA ∼ −ASS − SAS. (19)

It follows from (18) that each monomial containing A3 or S3 vanishes. Each monomial
containing SAA or SSA can be decomposed according to (19) as a sum of other monomials
each of which precedes the initial monomial in the lexicographic ordering. It then follows
that the iterations of (18) and (19) finally give an expression without any one of the factors
A3, S3, SA2 and S2A. Applying (18) and (19) to a polynomial of the third degree gives

P3(A, S) ∼ L(A2S,ASA,AS2, SAS), (20)

where L is a linear combination of the arguments. Moreover, from relation (20) it follows that
tr(P3(A, S)) = L(tr(A2), tr(A2S), tr(S2), tr(S3)).

Applying (18) and (19) to a polynomial of the fourth degree gives

P4(A, S) ∼ L(A2SA,A2S2, ASAS, SASA, SAS2), (21)

but the expression allows further simplification. The reason is the existence of another relations
besides (15)–(17). For example, none of the relations (18), (19) can be applied to the monomial
ASASAS, but from the Hamilton–Cayley identity for the matrix AS it follows that (AS)3 ∼ 0.
Applying (15)–(17) to the coefficient of αβγ in the identity χ3(αA + βS + γAS) = 0 gives
the equation

A2S2 − (SA)2 − A2 tr(S2)/2 − S2 tr(A2)/2 + I tr(A2S2) + I tr((AS)2) = 0. (22)

Neglecting the polynomials of lesser degrees results in

SASA ∼ A2S2 (23)

that turns (21) into P4(A, S) ∼ L(A2SA,A2S2, ASAS, SAS2). Taking the trace of (22) gives
the equation that relates tr(A2S2) and tr((AS)2):

4 tr(A2S2) + 2 tr((AS)2) − tr(A2) tr(S2) = 0. (24)

Thus we have found all possible relations for the fourth degree monomials. From (22)
and (24) the necessity follows to add one more invariant to �3(A, S) — tr(A2S2), tr((AS)2)

or their linear combination independent on (24), for example, the invariant tr([A, S]2) with
the commutator [A, S] ≡ AS − SA.

For the polynomials of the fifth degree, applying (18), (19) and (23) gives P5(A, S) ∼
L(A2SAS,ASAS2). To find relations for the fifth degree monomials we equate to zero
the coefficient of αβ2 in the identity χ3(αS + βAS) = 0 after simplification that results in
I tr(ASAS2) + I tr(A2) tr(S3)/6 = 0. Consequently, there are no new invariants to add to the
�3(A, S).

Using (18), (19) and (23) for the polynomials of the sixth degree gives the relation
P6(A, S) ∼ L(A2SAS2), specifically, it follows [A, S]3 ∼ −6A2SAS2. Analysing the
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identity χ3([A, S]) = 0 we conclude that [A, S]3 ∼ 0. Another invariant tr([A, S]3) =
−6 tr(A2SAS2) is added to the set �3.

Finally, P6(A, S) ∼ 0, and hence any polynomial of the matrices A and S can be
represented as a polynomial of the degree not higher than five with coefficients which are
polynomials of �3(A, S). For the trace of each polynomial we have tr(P (A, S)) = P(�3).
The complete minimal set of invariants of the traceless 3 × 3 matrix (9) is

�3(A, S) = {tr(A2), tr(S2), tr(A2S), tr(S3), tr([A, S]2), tr([A, S]3)}. (25)

To construct the basis of the family �(n) we need to take into account additional relation among
invariants in (25). Namely, that the last invariant is similar to pseudoscalar and its square is
expressed as the polynomial on the others invariants. To prove that we rewrite (15) in the form
I tr(M3)/3 = M3 − M tr(M2)/2 substituting M = [A, S]. After squaring and applying of
(16), (17) and (22) to the right-hand side we obtain the desired relation. Thus for d = 3 any
operator from �(n) can be decomposed into the basis

tr(A2)n1 tr(S2)n2 tr(A2S)n3 tr(S3)n4 tr([A, S]2)n5 tr([A, S]3)n6 ,

n = 2n1 + 2n2 + 3n3 + 3n4 + 4n5 + 6n6, n6 � 1.
(26)

5. Conclusion

The leading contribution to the inertial-range behaviour of the structure functions of the vector
admixture ϕ has the form Sn(r) ∼ rn(1−ε/2)(r/L)−ξn , where the anomalous exponents ξn are
given by eigenvalues of the matrix of critical dimensions of the family �(n) of scalar operators
of the form (∂ϕ)n, see [18]. The main results of the paper are finding the minimal sets �d of
the invariants of the tensor ∂iϕj for the spatial dimensions d = 2 (13) and d = 3 (25). The
method proposed for invariants searching is based on the Hamilton–Cayley identity and can
be generalized to searching of the joint invariants of the several tensors for arbitrary spatial
dimension. Using the invariants from �d the bases of the family �(n) were constructed for
arbitrary n in two dimensions (14) and three dimensions (26).

For d = 2, the basis (14) has clear physical sense as tr(S2) ∝ �dis—the dissipation
operator and tr(A2) ∝ |rot ϕ|2—the enstrophy operator. The matrix of the critical dimensions
become triangular in the basis. Just as in the scalar admixture case the inertial range behaviour
of the structure function is determined by the power of the dissipation operator. So the basis
(14) provides the possibility of solving problems in general. With another representation of the
basis (14) it was obtained ξn = εn(n − 2)/8 + O(ε2) in [21] that coincides with the exponents
(5) of the scalar case.

For d = 3, the matrix of critical dimensions in the basis (26) has a general form. However,
taking into account the dependencies between the operators radically reduces the size of the
matrix. For example, the family �(18) contains 47 246 operators for general d, but only 154 of
them appear independent for d = 3. This gives the possibility of calculating the anomalous
exponents (in the linear approximation on ε): ξ4 ≈ 0.546ε, ξ6 ≈ 1.75ε, ξ8 ≈ 3.66ε, ξ10 ≈
6.27ε, ξ12 ≈ 9.58ε, ξ14 ≈ 13.6ε, ξ16 ≈ 18.3ε, ξ18 ≈ 23.7ε.
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